A standard studentship consists of academic fees paid at standard Research Council rates and a Research Training Support Grant for consumables.

UK students will be eligible for a full award which includes standard studentship fees plus maintenance at EPSRC rates.

European Union applicants will be eligible for an award paying academic fees and RTSG only, except in cases where residency in the UK has been established for more than 3 years prior to the start of the programme of study.
Our EPSRC Centre for Doctoral Training Innovation in Medical and Biological Engineering, will provide postgraduate research and training for 50 students, to research, develop and deliver medical implants and devices, which can repair or replace diseased tissues and restore normal tissue function.

Development of experimental and computational models to represent injury and disease will contribute to the advancement of clinical interventions for treating a wide range of conditions. Development of models for pre-clinical testing of new devices and materials will enhance the translation of knowledge into the manufacture of new devices and regenerative interventions.

This is an exciting opportunity to undertake a 4 year funded integrated PhD and MSc in Innovation in Medical & Biological Engineering.

The Centre for Doctoral Training Innovation in Medical and Biological Engineering will provide postgraduate research and training for 50 students, to research, develop and deliver regenerative therapies and devices, which can repair or replace diseased tissues and restore normal tissue function.

The programme will include an integrated MSc in Tissue Engineering and Regenerative Medicine – Innovation in Medical & Biological Engineering, which will comprise compulsory and optional taught modules over the first two years with the majority studied in year 1, allowing a phased increase to full time research towards the end of year 2.

Examples of current research projects:

• Development of a biomechanical simulator to evaluate repair materials for ankle injury
• Computational methods for the modelling of spinal cord injury.
• Femoral head bone support for cartilage in osteoarthritis: an image based mapping tool.
• Building new bone and periosteum using collagen-based scaffolds.
• Engineering mechanically competent constructs for cartilage repair.
• Functional joint replacement technologies e.g. novel composite polymers, modelling of impingement.
• Biomechanical properties of flowable wound matrices
• Materials engineering of multiscale scaffolds for spinal cord injury repair.