The effects of irradiation on the viscoelastic properties of acellular porcine super flexor tendons: the influence of irradiation dosage and storage time following sterilisation

Anthony Herbert,* Jennifer Edwards, Eileen Ingham & John Fisher,
Institute of Medical and Biological Engineering, University of Leeds, UK. *A.Herbert@leeds.ac.uk

Introduction

• Rupture of the anterior cruciate ligament (ACL) has been estimated to occur at an annual rate of 1 in 3000 in the US alone [1]. Decellularisation of xenogeneic tissues offers a promising solution to ACL replacement in plentiful supply.
• This study aimed to investigate the effects of chemical and irradiation sterilisation of varying dosages on the viscoelastic properties of a proposed ACL graft – the acellular porcine super flexor tendon (pSFT).
• Effects were investigated at two time points (t=0 & 12 months post sterilisation) to determine whether the properties remained stable with time.

Viscoelastic Characterisation

Testing comprised of a ramp displacement phase at 30mm/min until a stress of 5MPa was achieved. At this point the strain (ε_0) remained fixed for a period of 5mins while stress relaxation ($\sigma(t)$) was recorded. The relaxation modulus ($E(t)$) was calculated and fitted to a modified Maxwell-Wiechert model [3].

\[E(t) = E_0 + \frac{1}{t_0} \sum_{i=1}^{n} \frac{1}{\tau_i} \left(e^{-\frac{t}{\tau_i}} - 1 \right) \]

This lack of deterioration indicated that the acellular pSFT graft has a stable shelf-life.

Results

There was a significant reduction in the time-independent elasticity (E_0), but also in the short term elastic response (E_1) of all irradiated specimens (figure 1a and 1b respectively). However, no significant differences were found between the irradiated groups, indicating that the reduction in these viscoelastic parameters was not a function of irradiation dosage within the dose range investigated.

Discussion

• Irradiation of biological tissues is known to create free radicals which can disrupt the bonds within collagen. However, it was notable that there were no significant differences between the irradiated groups.
• Hence, it is possible that greater damage exists within tissues exposed to greater dosages of irradiation, but that this is not fully realised until the tissues experience more demanding conditions and higher levels of strain then stress relaxation testing.
• Although the parameters E_0 and E_1 were found to decrease significantly, this was not found to have been altered further after 12 months storage. This would indicate that the free radicals released by irradiation had a short term effect on the tissues and did not continue to cause significant additional collagen disruption following the initial treatment.
• This lack of deterioration indicated that the acellular pSFT graft has a stable shelf-life.

Materials & Methods

3 sterilisation strategies were analysed at 0 and 12 months:
• Peracetic acid only (PAA).
• E-beam = 15kGy, 15+15kGy (fractionated dose) & 30kGy.
• Gamma = 15kGy, 30kGy & 55kGy (High dose control).

Viscoelastic parameters were calculated using the time-independent modulus, E_0 and the short term time-dependent modulus, E_1.

References
1. Woods & Gratzer, 2005, Biomats, 26, pp. 7339-7349
2. Stapleton et al., 2008, Tissue Eng Part A, 14, pp. 105-118

Acknowledgements
This research was funded through WELMEC, the Leeds Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC, WT088908/Z/09/Z and a European Research Council advanced award REGENEE.

Financial Disclosure
J. Fisher is a paid consultant to DePuy Synthesis Joint Reconstruction, Invibio, Tissue Regenex Group plc and a share holder of Tissue Regenex Group plc. J. Edwards is a paid consultant to DePuy Synthesis Joint Reconstruction, Stryker, Tissue Regenex Group plc and a share holder of Tissue Regenex Group plc.