Wear of Crossed-Linked UHMWPE using **Electromechanical and Pneumatic Hip Joint Simulators**

UNIVERSITY OF LEEDS

Murat Ali⁺, Susan Partridge, Mazen Al-Hajjar, Sophie Williams, John Fisher, Louise M. Jennings

Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK

*Contact email: m.e.ali@leeds.ac.uk

Introduction

Institute of Medical &

Biological Engineering

Applying the same standard conditions using different simulators provides the opportunity to compare the wear rates of the same type of hip component: however the expectation of obtaining the same results using different simulators has been challenged. Recently developed electromechanical simulators are able to fully comply with the latest ISO standards [1].

Aim

The aim of this study was to compare the wear rates of metal-on-UHMWPE bearings tested using newly developed electromechanical hip ioint simulators and a pre-existing pneumatic hip joint simulator.

Materials and Equipment

Ten 36mm diameter cobalt chrome on moderately cross-linked UHMWPE (Marathon[™], DePuy Synthes Joint Reconstruction, Leeds, UK) hip replacements were tested on simulators, ProSim EM13 (n = 6) and ProSim pneumatic (n = 4)(Simulation Solutions, Stockport, UK).

Methods

The input load profile, angular displacements [2] and lubrication were the same for all tests. EM13 and pneumatic simulator test conditions

	Test condition
Axial load	3000N twin peak load with 300N swing phase load
Flexion-Extension	+30°/-15°
Internal-External rotation	±10°
Lubrication	25 % new-born calf serum
Test duration	5 million cycles (for each test)

ProSim electromechanical and pneumatic simulator test station schematic (front view)

- Gravimetric analysis was carried out at 1, 2, 3 and 5 million cycle intervals using a microbalance (Mettler Toledo XP205, Greifensee, Switzerland).
- Statistical analysis: One-way ANOVA, significance taken at $p \le 0.05$.

Acknowledgements

Between 0-5 million cycles: the wear rate (per million cycles) from EM13 was significantly higher (p < 0.01) compared with the ProSim pneumatic simulator.

Discussion

- Differences in simulator design, load and kinematics application could contribute to the variation in wear rates in metal-on-polyethylene hip replacement bearings. Different phasing and magnitude of the twin peak loads, and transition rate to the swing phase load was observed between simulators.
- The importance of using control samples for each simulator is confirmed.
- Comparing results from different simulators may offer an initial approach to simulator validation. however, direct comparisons of absolute wear rates between simulators should be avoided.

Significance

This study shows the importance and influence of in-vitro simulator design and mechanics on the wear rates of moderately cross-linked polyethylene.

Financial Disclosure

J. Fisher is an NIHR Senior Investigator and his research is supported through the NIHR Leeds Musculoskeletal Biomedical Research Unit. DePuy Synthes, a Johnson & Johnson company, supplied the components. John Fisher and Sophie Williams are paid consultants to DePuy Synthes

References [1] ISO 14242-1:2014

[2] Barbour PSM et al. Proc. Inst. Mech. Eng. H J. Eng. Med.. 213, 455-467, 1999.

This study was funded by Innovation and Knowledge Centre in Medical Technologies which is funded by the EPSRC, TSB and BBSRC. It was partially funded through WELMEC, a Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC, under grant number WT 088908/Z/09/Z.