Institute of Medical & Biological Engineering

The development of a 20-year economic model for the cost-effectiveness analysis of using decellularised bone versus fresh-frozen allograft as an acetabular impaction bone graft during a revision hip arthroplasty Kern Cowell, James Chandler, Anthony Herbert, Paul Rooney, Ruth Wilcox, Hazel Fermor

Why is a cost-effectiveness analysis needed?

2240 revision hip replacements in the UK every year require a bone replacement^{1,2}

Fresh-frozen allografts are the current gold standard for revision hip arthroplasty²

Acetabular impaction bone graft

Decellularised bone grafts could reduce immune reaction and increase regenerative potential but processing costs more than freshfrozen allograft³

Economic evaluation to weigh up costs and health benefits

Economic model for cost-effectiveness analysis

Markov model⁴: Health states and transition probabilities *p* to from

Economic Model												
	Probabilities				Costs				Quality adjusted life years (QALYs)			
Years	Revision	Success	Rerevision	Dead	Revision	Success	Rerevision	Dead	Revision	Success	Rerevision	Dead
1.0	1.000	0.000	0.000	0.000	18825.18	0.00	0.00	0.00	0.40	0.00	0.00	0.00
2.0	0.000	0.909	0.006	0.085	0.00	44.27	116.41	0.00	0.00	0.60	0.00	0.00
20	0.000	0.246	0.002	0.752	0.00	6.45	16.69	0.00	0.00	0.09	0.00	0.00
Totals	1.000	9.713	0.067	9.220	18825.1 8	379.11	L 983.04	0.00	0.40	5.15	0.02	0.00
							Total cost	20187.3 4			Total QALYs	5.57

The model has yearly cycles that estimate the quality adjusted life years (QALYs) and costs over a time period of 20 years from the first RHA.

At year 1 of the model all patients start in the revision health state, in the following years the patients transition between the re-revision, success and dead health states.

All of the costs and the health benefits (QALYs) are summed for years 1 to 20

Results and Conclusions

Incremental cost effectiveness ratio (ICER): C₁ is the cost and E_1 is the effectiveness of the new intervention with C_0 and E_0 being the cost and effectiveness of the original intervention⁵

$$ICER = \frac{C_1 - C_0}{E_1 - E_0}$$

For decellularised grafts to be cost effective:

Production costs need to be lowered to £4502.78 per graft

ICER for decellularised bone graft – fresh-frozen allograft

$$\pounds 43,362.24 = \frac{\pounds 20,187.34 - \pounds 17,692.19}{5.571 - 5.514}$$

Re-revision rate needs to be lowered to 64 re-revisions per year per 10,000 patients

References

1. NJR (2019). "16th Annual Report". In: National Joint Registry

2. Lomas, R., A. Chandrasekar, and T. N. Board (2013). "Bone allograft in the U.K.: perceptions and realities". In: Hip Int 23.5, pp. 427-33. doi: 10.5301/hipint.5000018. url: http://www.ncbi.nlm.nih.gov/pubmed/23813163.

3. Gardin, C. et al. (2015). \Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures". In: PLoS One 10.7 doi: 10.1371/journal.pone.0132344. url: http://www.ncbi.nlm.nih.gov/pubmed/26191793.

- 4. Komorowski, M and J Raa (2016). \Markov models and cost eectiveness analysis: applications in medical research". In: Secondary analysis of electronic health records. Springer, pp. 351-367.
- 5. Bhattacharya, J., T. Hyde, and P. Tu (2013). Health Economics. Palgrave Macmillan. ISBN: 9781137029973. url: https://books.google.co.uk/books?id=RvccBQAAQBAJ

iMBE

Engineering '50 active years after 50' through multi-disciplinary research, innovation, knowledge creation and translation.

Optimising Knee Therapies through improved stratification and precision of the intervention

Engineering and Physical Sciences **Research Council**