

BiTEG 2020

Kidney Tissue Engineering using Polyhydroxyalkanoates

Syed Mohammad Daniel Syed Mohamed¹, Gavin Welsh², Ipsita Roy¹ ¹ Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, ²Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol

Introduction

Polyhydroxyalkanoates (PHAs) are natural polymers of bacterial origin produced using bacterial fermentation. PHAs are known to be biocompatible towards a broad array of human cells, and have been widely utilised in biomedical applications.¹ A medium-chain-length PHA (mcl-PHA) is selected to develop a bioartificial kidney with the potential of constructing a 'wearable kidney' in the future.² Initially, this research will explore glomerular cells for the tissue engineering approach, the conditionally immortalised human podocytes (CIHP).³ In future, other cell types and additive manufacturing will be combined with the ultimate aim of the development of a mature bioartificial kidney.

mcl-PHA (P(3HO-co-3HD))

Summary

Fermentation was done in 30L fed-batch fermenter, utilising *Pseudomonas putida*. The mcl-PHA inclusion was extracted and solvent cast into polymer films.

The mcl-PHA was characterised using: <u>NMR</u> to determine structure; <u>GC-MS</u> to determine monomer composition; and <u>FTIR</u> to determine functional groups

CIHP cells is grown onto the mcl-PHA and assayed for viability in terms of growth and physiological performance.

The polymer will be potentially 3D printed in to a bioartificial kidney construct with CIHP.

References

- Lizarraga-Valderrama, L.R., et al., Tissue Engineering: Polyhydroxyalkanoate-Based Materials and Composites. Encyclopedia of Polymer Applications, Vols I-Iii, 2019: p. 2652-2675.
- Tarantal, A.F. and C.A. Batchelder, Scaffolds for kidney tissue engineering: Handbook of Tissue Engineering Scaffolds, Vol 2, 2019: p. 477-492.
- Kitching, A.R. and H.L. Hutton, The Players: Cells Involved in Glomerular Disease. Clinical Journal of the American Society of Nephrology, 2016. 11(9): p. 1664-1674.
- 1(o), p. 100+104, Annuar, M.S.M., & Heidelberg, T. (2014). Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001. Erazilian Journal of Microbiology, 45(2), 427-438